Quantcast
Channel: 更新情報 --- 東工大ニュース | 東京工業大学
Viewing all articles
Browse latest Browse all 4086

研究者・留学生向け英文メールニュース 「Tokyo Tech Bulletin No. 49」を配信

$
0
0

Tokyo Tech Bulletin(トーキョー テック ブリテン)」は、東京工業大学の研究成果やニュース記事、学生の活動などを紹介し国内外へ広く配信する英文メールニュースです。

この度、Tokyo Tech Bulletin No. 49が発行されました。

メールでの配信をご希望の方は申込フォームからご登録ください。

SPECIAL TOPICS

Shinya Koshihara - Shining light to alter materials at the blink of an eye

Shinya Koshihara - Shining light to alter materials at the blink of an eye

For some materials, light can induce a change in state through a process known as photo-induced phase transition. This phenomenon has attracted global attention as a pathway to replacing current electronic devices with ultrafast, low-energy, optical devices.

GSEP vision, TSE aspiration: Going beyond borders - Inspiring Tech students to develop a global perspective

GSEP vision, TSE aspiration: Going beyond borders - Inspiring Tech students to develop a global perspective

GSEP, Tokyo Tech's first international Bachelor of Engineering degree program run by Transdisciplinary Science and Engineering (TSE) provides rare opportunities for students to gain valuable hands-on experience in sustainable development and many other issues of global concern. Now, as the program enters its third year, current students of GSEP and TSE, and faculty members provide an inside view of the program and describe the advantages of transdisciplinary learning.

Research

Hideo Hosono's story of IGZO TFT development features in Nature Electronics

Hideo Hosono's story of IGZO TFT development features in Nature Electronics

Each issue of the journal Nature Electronics contains a column called "Reverse Engineering," which examines the development of an electronic device now in widespread use from the viewpoint of the main inventor. So far, it has featured creations such as the DRAM, DVD, CD, and Li-ion rechargeable battery. The July 2018 column tells the story of the IGZO thin film transistor (TFT) through the eyes of Professor Hideo Hosono of Tokyo Tech's Institute of Innovative Research (IIR), who is also director of the Materials Research Center for Element Strategy.

The Unfolding Story of Water on Early Mars, and What It Says About Life

The Unfolding Story of Water on Early Mars, and What It Says About Lifeouter

ELSI's contribution to early Mars research centers on water, and the key and much-debated question of how much of it might have been present and free-flowing on the surface 3 to 4 billion years ago. ELSI of Tokyo Tech, associate principal investigator Tomohiro Usui, an expert in geo and cosmo chemistry, has been working for several years on the question of how much water was present on early Mars.

Organic Photocatalyst: Reducing energy loss

Organic Photocatalyst: Reducing energy loss

A combination of materials that reduces energy loss in organic solar cells has been identified by Tokyo Tech researchers.

High Performance Nitride Semiconductor for Environmentally Friendly Photovoltaics

High Performance Nitride Semiconductor for Environmentally Friendly Photovoltaics

A Tokyo Tech research team has shown copper nitride acts as an n-type semiconductor, with p-type conduction provided by fluorine doping, utilizing a unique nitriding technique applicable for mass production and a computational search for appropriate doping elements, as well as atomically resolved microscopy and electronic structure analysis using synchrotron radiation. These n-type and p-type copper nitride semiconductors could potentially replace the conventional toxic or rare materials in photovoltaic cells.

Control of quantum state of optical phonon in diamond induced by ultrashort light pulses

Control of quantum state of optical phonon in diamond induced by ultrashort light pulses

A step towards quantum memory. Ultrashort Light-pulse-induced vibrations of atoms in a lattice, called optical coherent phonons, have been controlled in various materials. However, different experiments demonstrating such control have been explained differently through empirical theories, and a unified theory based on quantum mechanics is lacking. Scientists at Tokyo Tech successfully formulated a unified theory for this phenomenon and experimentally verified it in diamond, the optical phonons of which have great potential for application in quantum information technology.

In the spotlight

Tokyo Tech Bulletinは英語で配信を行っていますが、コンテンツは一部を除いてすべて日英両方で掲載しています。

お問い合わせ先

広報・社会連携本部 広報・地域連携部門

E-mail : publication@jim.titech.ac.jp


Viewing all articles
Browse latest Browse all 4086

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>